

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 15 (2005) 191-194

Himeic acid A: a new ubiquitin-activating enzyme inhibitor isolated from a marine-derived fungus, *Aspergillus* sp.

Sachiko Tsukamoto,^{a,*} Hiroshi Hirota,^{b,c} Misako Imachi,^d Masahiro Fujimuro,^e Hiroyuki Onuki,^{b,c} Tomihisa Ohta^a and Hideyoshi Yokosawa^e

^aFaculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa 920-1192, Japan

^bRIKEN Genomic Sciences Center (GSC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan

^cGraduate School of Integrated Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan

^dBruker BioSpin K.K., 21-5, Ninomiya-3-chome, Tsukuba 305-0051, Japan

^eGraduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan

Received 26 August 2004; revised 4 October 2004; accepted 5 October 2004 Available online 26 October 2004

Abstract—A new ubiquitin-activating enzyme (E1) inhibitor, himeic acid A, was isolated from a culture of marine-derived fungus, *Aspergillus* sp. The structure was determined by spectroscopic analysis. The formation of an E1-ubiquitin (Ub) intermediate was 65% inhibited by himeic acid A at the concentration of $50\,\mu\text{M}$, while two new related compounds, himeic acids B and C, showed little inhibitory activity even at $100\,\mu\text{M}$. © 2004 Elsevier Ltd. All rights reserved.

Ubiquitination of proteins requires the sequential action of three enzymes, the ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin-protein ligase (E3). 1-4 Since E1 activity is essential for the ubiquitin-proteasome pathway that plays important roles in various cellular events, including cell cycle progression, transcriptional regulation, and signal transduction, 1-4 inhibitors of E1 could be useful for treatment of diseases related to the ubiquitin-proteasome pathway. In fact, several proteasome inhibitors show anti-cancer activity against various cancer cells that are resistant to conventional chemotherapeutic agents. In the course of our search for inhibitors against the ubiquitin-proteasome pathway, we have already succeeded in isolating agosterol derivatives as proteasome inhibitors.⁶ In addition, we found that girolline, an anti-cancer compound, is the first agent inhibiting the recruitment of polyubiquitinated p53 to the proteasome. 7 In this paper, we describe the isolation and structure elucidation of new compounds, himeic acids A-C (1-3), and their inhibitory activities against E1.

Keywords: Ubiquitin-activating enzyme inhibitor; Marine-derived fungus; Aspergillus sp.

The fungus, *Aspergillus* sp.,⁸ was separated from the mussel, *Mytilus edulis*, collected in Toyama Bay in the Japan Sea. The mycelium grown in the culture⁹ (1.2 L) was extracted with MeOH. The EtOAc soluble part of the extract was partitioned between hexane and 90% MeOH–H₂O, and the latter fraction was purified by ODS chromatography and ODS HPLC to afford himeic acids A (1, 0.36g),¹⁰ B (2, 49.0g),¹¹ and C (3, 18.4 mg).¹²

^{*}Corresponding author. Tel.: +81 76 234 4469; fax: +81 76 264 6241; e-mail: sachiko@p.kanazawa-u.ac.jp

Table 1. NMR spectral data for 1 in CDCl₃-C₅D₅N (1:1)

	δ_{H} (mult.,	Hz)	$\delta_{ m C}$	HMBC (#C)	
1			175.7 C		
2	2.40 (2H)	t, 7.3	34.2 CH ₂	1, 3	
3	1.72 (2H)	Quintet, 7.3	24.9 CH ₂	1	
4	1.38 (2H)	m	28.90 ^a CH ₂	3	
5	1.29 (2H)	m	28.7^{a} CH_{2}		
6	1.29 (2H)	m	28.83 ^a CH ₂		
7	1.29 (2H)	m	28.86 ^a CH ₂		
8	1.42 (2H)	m	27.9 CH ₂	9, 10	
9	2.19 (2H)	dt, 7.0, 7.3	32.5 CH ₂	8, 10, 11	
10	6.70	dt, 16.0, 7.0	142.8 CH	8, 9, 11, 12	
11	6.07	d, 16.0	120.5 CH	9, 10, 12, 13	
12			162.6 C		
13	6.32	S	113.2 CH	11, 12, 14, 15	
14			177.58 ^b С		
15			118.0 C		
16	8.76	S	162.2 CH	12, 14, 15, 17	
17			161.0 C		
1′			172.8 C		
2'	2.99	dd, 17.7, 5.2	41.9 CH ₂	1', 3', 4', 5'	
	3.52	dd, 17.7, 8.6		1', 3', 4', 5'	
3′	3.23	ddq, 8.6, 5.2, 6.4	35.0 CH	1', 2', 4', 5'	
4′			177.61 ^в С		
5′	1.37 (3H)	d, 6.4	17.1 CH ₃	2', 3', 4'	
NH	12.04	S		15, 17, 2'	
3 M . 1 . '- 4 1 1 1					

^a May be interchangeable.

Himeic acid A (1) had a molecular formula of C₂₂H₂₉NO₈ as determined by HRFABMS, requiring nine degrees of unsaturation. Analysis on the basis of the ¹H and ¹³C NMR data (Table 1) combined with the HMQC spectrum in CDCl₃-C₅D₅N (1:1) showed the presence of an aliphatic doublet methyl, a 1,2-disubstituted trans-olefin (δ_H 6.07; δ_C 120.5 and δ_H 6.70; δ_C 142.8), two singlet olefins (δ_H 6.32; δ_C 113.2 and δ_H 8.76; $\delta_{\rm C}$ 162.2), a D₂O-exchangeable proton (δ 12.04), and seven quaternary carbons including three carbonyl carbons. Interpretation of the COSY and HMBC spectra allowed the assignment of two units, a 3-substituted dienone attached to a linear fatty acid C-1–C-14 (unit A) and a butanone substituted with a carbonyl carbon at the β -position C-1'-C-5' (unit B). HMBC correlations between the two olefinic protons at $\delta_{\rm H}$ 6.32 and 8.76 and three quaternary carbons $\delta_{\rm C}$ 118.0, 162.6, and 177.58 indicated that the signals were accommodated on a 2,5-disubstituted 4-pyrone ring in which unit A was partially incorporated (Fig. 1). The D₂O-exchange-

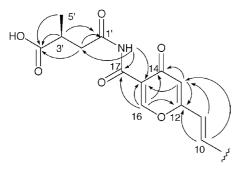


Figure 1. Key HMBC correlations for 1.

able proton showed HMBC correlation with two quaternary carbons at δ 118.0 (C-15) and δ 161.0 (C-17) and a methylene at δ 41.9 (C-2'), indicating that unit B was connected to the pyrone ring through an amide group. Connection of these units was substantiated by the INADEQUATE spectrum. The absolute configuration of C-3' was determined by application of the PGME (phenylglycine methyl ester) method¹³ using di-(*R*)-PGME and di-(*S*)-PGME derivatives¹⁴ of **1** to be *S*.

Himeic acid B (2) had a molecular formula smaller than that of 1 by a $C_5H_6O_3$ unit. The 1H and ^{13}C NMR spectra of 2 (Table 2) were almost superimposable on those of 1 except for the absence of unit B (C-1'-C-5') and the presence of two prominent broad singlet protons at δ 7.88 and 9.19, which exhibited a weak cross-peak in the COSY spectrum. Interpretation of the 2D NMR data of 2 led to the structure of 2.

Himeic acid C (3) had a molecular ion peak at m/z 435 [M+H]⁺ in the FABMS, which was one mass unit less than that of **1** and matched a formula of $C_{22}H_{30}N_2O_7$. Although the ¹H and ¹³C NMR spectra of **3** (Table 3) were very similar to those of **1**, differences in the chemical shift values were observed in C-10–C-17. Especially, the carbon signals at C-12 (δ 147.6) and C-16 (δ 143.7) were resonated in higher field than those of **1** (δ 162.6, C-12; δ 162.2, C-16), which were secured by analysis of 2D NMR data. These data suggested that the 4-pyrone ring in **1** was replaced by a 4-pyridone ring in **3**.

E1 catalyzes the formation of a ubiquitin-adenylate intermediate from ubiquitin and ATP, and subsequently the binding of ubiquitin to a cysteine residue in the E1 active site in a thiol ester linkage. The effect of himeic acid A (1) on the formation of the E1-ubiquitin intermediate from a recombinant Flag-tagged human E1¹⁹ and GST-ubiquitin in the presence of ATP was analyzed by Western blotting with anti-Flag antibody (Fig. 2). Himeic acid A (1) inhibited the E1-ubiquitin

Table 2. NMR spectral data for 2 in CDCl₃-C₅D₅N (1:1)

	δ_{H} (mult.,]	Hz)	$\delta_{ m C}$	HMBC (#C)
1			176.3 C	_
2	2.39 (2H)	t, 7.3	34.8 CH ₂	1, 3
3	1.71 (2H)	Quintet, 7.3	25.3 CH ₂	1, 2
4	1.37 (2H)	m	29.2 ^a CH ₂	
5	1.28 (2H)	m	29.34 ^a CH ₂	
6	1.28 (2H)	m	29.36 ^a CH ₂	
7	1.28 (2H)	m	29.39^{a} CH_{2}	
8	1.41 (2H)	m	28.4 CH ₂	
9	2.16 (2H)	q, 7.3	32.9 CH ₂	8, 10, 11
10	6.65	dt, 15.9, 7.3	149.7 CH	8, 11, 12
11	6.05	d, 15.9	121.3 CH	9, 12, 13
12			162.7 C	
13	6.29	S	113.9 CH	11, 12, 15
14			178.5 C	
15			119.8 C	
16	8.77	S	161.3 CH	12, 14, 15, 17
17			164.4 C	
NH_2	7.88	br s		
	9.19	br s		

^a May be interchangeable.

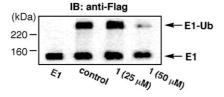

^b May be interchangeable.

Table 3. NMR spectral data for 3 in CDCl₃-C₅D₅N (1:1)

Table 3. NIVIK spectral data for 3 in CDC13-C5D5IN (1.1)						
	δ_{H} (mult., I	Hz)	$\delta_{ m C}$	HMBC (#C)		
1			176.1 C			
2	2.44 (2H)	t, 7.3	34.8 CH ₂	1, 3		
3	1.72 (2H)	Quintet, 7.3	25.5 CH ₂	1, 2		
4	1.35 (2H)	m	28.6 ^b CH ₂			
5	1.17^{a} (2H)	m	29.1 ^b CH ₂			
6	1.22^{a} (2H)	m	29.38 ^b CH ₂			
7	1.33 ^a (2H)	m	29.44 ^b CH ₂			
8	1.30 (2H)	m	29.44 ^b CH ₂			
9	2.10 (2H)	dt, 7.0, 7.3	33.0 CH ₂	10, 11		
10	6.62	dt, 16.5, 7.3	139.9 CH	9, 12		
11	6.24	d, 16.5	123.0 CH	9, 12, 13		
12			147.6 C			
13	6.71	S	117.4 CH	11, 12, 14, 15		
14			178.8 C			
15			116.9 C			
16	8.69	S	143.7 CH	12, 14, 17		
17			164.2 C			
1'			174.0 C			
2'	3.13	dd, 17.2, 5.5	42.7 CH ₂	1', 4', 5'		
	3.69	dd, 17.2, 8.3		1', 3', 4', 5'		
3'	3.35	ddq, 8.3, 5.5, 6.3	35.9 CH	4', 5'		
5′	1.39 (3H)	d, 6.3	17.7 CH ₃	2', 3', 4'		
4′			178.2 C			
NH	13.70	S		17		

^a May be interchangeable.

^b May be interchangeable.

Figure 2. Inhibition of the E1–ubiquitin intermediate formation by 1. Recombinant Flag-tagged human E1, GST–ubiquitin (Ub), and ATP were incubated in the presence or absence of 25 or $50\,\mu\text{M}$ 1, and the reaction mixture was then subjected to SDS-PAGE followed by immunoblotting (IB) with anti-Flag antibody and detection by the chemiluminescence method.

intermediate formation in a dose-dependent manner, and densitometric analysis revealed that the E1-ubiquitin intermediate formation was 65% inhibited by 1 at the concentration of 50 μ M. On the other hand, himeic acids B (2) and C (3) were unable to inhibit the intermediate formation even at 100 μ M. It is likely that a thiol group of the active site cysteine residue in E1 readily attacks an imide carbon C-1' in 1, resulting in inhibition of the thiol ester intermediate formation. However, 3 did not exhibit inhibitory activity in spite of the presence of the corresponding imide system in 3. Details of the inhibitory mechanism of 1 are now under investigation.

It is well known that post-translational protein modifications, including protein phosphorylation, acetylation, methylation, and ubiquitination, regulate various cellular events. Among them, ubiquitination has been known as a signal for protein degradation by the 26S proteasome. ^{1–4} In addition to the role of ubiquitin as a tag

for proteasomal degradation, accumulating evidence reveals that ubiquitin plays proteasome-independent roles in protein trafficking, endocytosis, DNA repair, and so on.²¹ In consequence, ubiquitin is involved in a variety of proteasome-dependent and -independent cellular events, such as cell cycle progression, transcription, DNA repair, signal transduction, endocytosis, apoptosis, and the immune response.^{1–4,21} Thus, ubiquitination has attracted widespread attention because of its wide regulatory roles. As bortezomib (PS-341), a proteasome inhibitor, has recently been approved by FDA for multiple myeloma treatment,⁵ E1 inhibitors including himeic acid A (1) also could become lead compounds for treatment of diseases related to ubiquitination.

Two cognate compounds, designated as microsphaerones A and B, were isolated from a sponge-derived fungus, *Microsphaeropsis* sp. ²² Microsphaerones A and B have additional double bonds at C-8 in 1 and 2, respectively, and no significant biological activity of them has been reported. In this study, we have reported the isolation, structure determination, and inhibitory activity against ubiquitin-activating enzyme of 1. Although several proteasome inhibitors have been isolated from the natural resources, this is the second compound identified as the ubiquitin-activating enzyme inhibitor. The first compound was isolated from a mushroom strain, *Panus rudis* Fr. IFO8994. ²³

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, and Technology of Japan and the Ichiro Kanehara Foundation.

References and notes

- Hershko, A.; Ciechanover, A. Annu. Rev. Biochem. 1998, 67, 425–479.
- Weissman, A. M. Nat. Rev. Mol. Cell. Biol. 2001, 2, 169– 178.
- 3. Pickart, C. M. Annu. Rev. Biochem. 2001, 70, 503-533.
- Glickman, M. H.; Ciechanover, A. Physiol. Rev. 2002, 82, 373–428.
- 5. Adams, J. Drug Discovery Today 2003, 8, 307–315.
- Tsukamoto, S.; Tatsuno, M.; van Soest, R. W. M.; Yokosawa, H.; Ohta, T. J. Nat. Prod. 2003, 66, 1181– 1185
- Tsukamoto, S.; Yamashita, K.; Tane, K.; Kizu, R.; Ohta, T.; Matsunaga, S.; Fusetani, N.; Kawahara, H.; Yoko-sawa, H. *Biol. Pharm. Bull.* 2004, 27, 699–701.
- 8. The fungus was identified on the basis of the morphological evaluation by NCIBM Japan Co., Ltd (Shizuoka, Japan). A voucher specimen is deposited at Kanazawa University with the code MF275.
- 9. The fungus was grown in a fermentation broth composed of 1:1 artificial seawater/deionized water with 2.0% malt extract and 0.5% peptone at 28°C for 8 days.
 10. Compound 1: [α]₀²⁶ -15 (c 0.14, MeOH); UV (MeOH) λ_{max}
- 10. Compound 1: $[\alpha]_D^{20}$ –15 (*c* 0.14, MeOH); UV (MeOH) λ_{max} (log ε) 234.5 (4.5) and 254.0 nm (4.4); IR (film) ν_{max} 2975, 2818, 1747, 1727, 1694, 1647, 1622, 1572, 1502, 1409, 1161 cm⁻¹. ¹H and ¹³C NMR (CDCl₃–C₅D₅N 1:1) see

- Table 1. FABMS (positive, glycerol matrix) m/z 322 [M+H-115]⁺, 436 [M+H]⁺, 458 [M+Na]⁺; HRFABMS m/z 436.1977 (calcd for $C_{22}H_{30}NO_8$ 436.1971).
- 11. Compound **2**: UV (MeOH) λ_{max} (log ϵ) 227.0 (4.3) and 266.0 nm (4.1); IR (film) ν_{max} 2918, 2846, 1697, 1668, 1558, 1541, 1409, 1251, 1188 cm⁻¹. ¹H and ¹³C NMR (CDCl₃– C₅D₅N 1:1) see Table 2. FABMS (positive, glycerol matrix) m/z 322 [M+H]⁺; HRFABMS m/z 322.1651 (calcd for C₁₇H₂₄NO₅ 322.1654).
- for $C_{17}H_{24}NO_5$ 322.1654). 12. Compound 3: $[\alpha]_D^{26}$ -9.8 (*c* 0.32, MeOH); UV (MeOH) λ_{max} (log ε) 252.0 (4.4); IR (film) ν_{max} 2923, 2852, 1732, 1717, 1624, 1506, 1243, 1186cm⁻¹. ¹H and ¹³C NMR (CDCl₃-C₅D₅N 1:1) see Table 3. FABMS (positive, glycerol matrix) m/z 435 [M+H]⁺; HRFABMS m/z 435.2139 (calcd for $C_{22}H_{31}N_2O_7$ 435.2132).
- Yabuuchi, T.; Kusumi, T. J. Org. Chem. 2000, 65, 397– 404.
- 14. Di-(S)-PGME amide (4): 1 H NMR (CDCl₃): δ 1.21 (3H, d, J = 7.3 Hz, H₃-5'), 2.23 (1H, m, H-2), 2.24 (1H, m, H-2), 2.27 (2H, dt, J = 6.4, 7.3 Hz, H₂-9), 2.82 (1H, dd, J = 17.6, 4.9 Hz, H-2'), 2.97 (1H, m, H-3'), 3.32 (1H, dd, J = 17.6,8.3 Hz, H-2'), 3.71 (3H, s, OMe), 3.73 (3H, s, OMe), 5.53 (1H, d, J = 6.9 Hz, CH of PGME moiety), 5.59 (1H, d, $J = 6.9 \,\mathrm{Hz}$, CH of PGME moiety), 6.10 (1H, d, $J = 16.0 \,\mathrm{Hz}, \,\,\mathrm{H}\text{-}11), \,\,6.29 \,\,\,(1\,\mathrm{H}, \,\,\mathrm{s}, \,\,\mathrm{H}\text{-}13), \,\,6.38 \,\,\,(1\,\mathrm{H}, \,\,\mathrm{d}, \,\,\mathrm{d})$ $J = 6.9 \,\mathrm{Hz}$, NH of PGME moiety), 6.77 (1H, dt, J = 16.0, 7.0 Hz, H-10), 6.95 (1H, d, J = 6.9 Hz, NH of PGME moiety), 8.73 (1H, s, H-16), 11.84 (1H, s, NH); FABMS (positive, glycerol matrix) m/z 762 [M+H]⁺. Di-(R)-PGME amide (5): 1 H NMR (CDCl₃): δ 1.27 (3H, d, $J = 6.9 \,\text{Hz}, \,\text{H}_3 - 5'$), 2.23 (1H, m, H-2), 2.24 (1H, m, H-2), 2.27 (2H, dt, J = 6.4, 7.3 Hz, H_2 -9), 2.79 (1H, dd, J = 17.6, 4.9 Hz, H-2'), 2.97 (1H, m, H-3'), 3.27 (1H, dd, J = 17.6, 8.8 Hz, H-2'), 3.730 (3H, s, OMe), 3.733 (3H, s, OMe), 5.55 (1H, d, J = 7.3 Hz, CH of PGME moiety), 5.59 (1H, d, $J = 7.3 \,\mathrm{Hz}$, CH of PGME moiety), 6.09 (1H, d, $J = 16.0 \,\mathrm{Hz}, \,\,\mathrm{H}\text{-}11), \,\,6.28 \,\,\,(1\,\mathrm{H}, \,\,\mathrm{s}, \,\,\mathrm{H}\text{-}13), \,\,6.36 \,\,\,(1\,\mathrm{H}, \,\,\mathrm{d}, \,\,\mathrm{d})$ $J = 7.3 \,\mathrm{Hz}$, NH of PGME moiety), 6.776 (1H, dt, J = 16.0, 7.0 Hz, H-10), 6.779 (1H, d, J = 7.3 Hz, NH of PGME moiety), 8.72 (1H, s, H-16), 11.77 (1H, s, NH); FABMS (positive, glycerol matrix) m/z 762 [M+H]⁺.

- 15. Haas, A.; Warms, J.; Hershko, A.; Rose, I. *J. Biol. Chem.* **1982**, *257*, 2543–2548.
- 16. Haas, A.; Rose, I. J. Biol. Chem. 1982, 257, 10329-10337.
- 17. Walden, H.; Podgorski, M. S.; Schulman, B. A. *Nature* **2003**, *422*, 330–334.
- Walden, H.; Podgorski, M. S.; Huang, D. T.; Miller, D. W.; Howard, R. J.; Minor, D. L., Jr.; Holton, J. M.; Schulman, B. A. Mol. Cell. 2003, 12, 1427–1437.
- 19. Saeki, Y.; Tayama, Y.; Toh-e, A.; Yokosawa, H. *Biochem. Biophys. Res. Commun.* **2004**, *320*, 840–845.
- E1 activity was measured on the basis of the formation of the E1-ubiquitin intermediate from E1 and ubiquitin in the presence of ATP. Flag-tagged E119 (0.1 µg) was previously incubated at 37°C for 30min in 25 µL of a reaction mixture containing 50 mM Tris-HCl, pH7.6, 0.1 mM dithiothreitol, 10 mM MgCl₂, 2 mM ATP, and 0.25 units of inorganic pyrophosphatase (Sigma), and subsequently $0.5 \mu L$ GST-Ub (MBL) was added to the mixture and the resulting mixture was incubated at 37°C for 60 min. The reaction was terminated by the addition of SDS-loading buffer and the reaction mixture was then subjected to SDS-PAGE in a slab gel containing 7% polyacrylamide under nonreducing conditions. After the proteins were blotted to the nitrocellurose membranes (BIO-RAD), blocking with 5% skim milk in phosphatebuffered saline containing 0.1% Tween 20 and the subsequent immunoblotting were carried out. For immunochemical detection of Flag-tagged E1, a mouse monoclonal M2 antibody against Flag-tag (SIGMA) and peroxidase-conjugated anti-mouse IgG (Amersham) were used as the first and second antibodies, respectively. Detection was performed using an enhanced chemiluminescence system (Amersham), and bands were visualized with a BIO-RAD Fluor-S™ MultiImager and analyzed by a BIO-RAD Image Analysis System.
- 21. Hicke, L. Nat. Rev. Mol. Cell Biol. 2001, 2, 195-201.
- 22. Wang, C.-Y.; Wang, B.-G.; Brauers, G.; Guan, H.-S.; Proksch, P.; Ebel, R. *J. Nat. Prod.* **2002**, *65*, 772–775.
- Sekizawa, R.; Ikeno, S.; Nakamura, H.; Naganawa, H.; Matsui, S.; Iinuma, H.; Takeuchi, T. *J. Nat. Prod.* 2002, 65, 1491–1493.